「算数嫌い」な子が得意になるために最初に身につけたい大切な力とは?

【第1回】「算数嫌い!」を言わせないために大切な、たった1つのポイント
迫田 昂輝先生

こんにちは。予備校や塾で数学を教えている迫田昂輝と申します。

今回、私が担当する算数シリーズでは、小学生のお子様をもつ保護者の皆さま向けに「どうやったら算数や数学に苦手意識を持たないようにできるか」というテーマで連載をしていく予定です。

算数の苦手意識を克服し、得意科目にするポイントや、お子様への声がけの仕方といった家庭学習のちょっとしたコツ。さらには、中学・高校と進学するにあたって重要となる算数から数学への接続などについて全12回を予定している連載の中でお話ししたいと思います。

第1回となる本記事では、お子様を算数嫌いにさせないために、絶対に押さえておきたい大切なポイントをお話しします。

小学算数でつまずきやすい単元は?

さて、お子様は算数のどの単元や項目で苦手意識を抱えておられるでしょうか?

算数という教科では、基本的に「積み上げ方式」で学習するので、前の学習の理解が不十分だと次の学習も意味が分からなくなってしまいます。

まずは、学年別に、つまずきやすい単元を挙げていきましょう。

つまずきやすい単元

小学1年 … 数の概念(順序数・集合数・数の保存性)、繰り上がり、繰り下がり
小学2年 … かけ算(九九)
小学3年 … わり算
小学4年 … 分数
小学5年 … 割合
小学6年 … 比

お子様が算数に苦手意識を持っているようでしたら、どこでつまずいているかを把握して、おうちでもサポートしてあげることが大切です。

つまり、小学5、6年生のお子様が算数につまずいている場合、小学1〜4年生の内容に戻って学習をさせてあげるというアプローチも有効なのです。

小学1年生が苦手意識を抱える傾向にある「数の概念」について簡単に説明してみます。

「りんごは3個ある」の3と「左から3番目」の3は、同じ数字の3ですが、対象としている概念が異なります。「りんごは3個」の3は物の集まり(集合)としての3であり、「左から3番目」の3は順序としての3です。

これらの数の概念は成長とともに勝手に身についていくのですが、低年齢のお子様、特に小学1年生のお子様の場合は、その定着度にかなり差があることがあります。

小学1年生の場合、例えば集合数の概念について例を出すと「7と8はどちらが大きい数か」という問いに答えられない子がいます。

りんごを15個用意して、左の皿に7枚、右の皿に8個のりんごをおいてもよく分からないのです。これを、左右の皿から同時に1個、2個、3個と取り除いていくと、最終的に右の皿に1個りんごが残ります。

このとき、はじめて8個の方が多かったと気づくのです。

数の概念は、日常生活の中に身につくことがほとんどなので、仮に小学校入学時にこれらの定着が不安であったとしても心配は要りません。

しかし、その次の段階である「かけ算」からは意識的に取り組まなければ、なかなか身につかないことが多いです。

この辺りから少しずつ苦手に感じる子と得意に感じる子の差が開き始めていく傾向があります。

算数が苦手な子に身についていない力とは?

では、算数(数学)が苦手な子に身についていない力は何なのか、「スポーツができる子」を例として考えてみましょう。

「スポーツができる子」は、どうやってスポーツができるようになったのでしょうか?

サッカーや野球などは、幼少期からはじめることで、センスが身についていきます。体の動かし方の効率が良くなり、遠くにボールを蹴ったり、動く球を正確に捕球できるようになったりします。

しかし、それらのセンスと呼ばれているものは、一定以上の体力があって初めて身についていきます。

スポーツを得意にする上で欠かせないのは反復練習ですが、体力が無ければ反復練習ができません。体力があるので、より良い身体の動かし方が身につくまで何度も繰り返すことができるのです。

そして、スポーツというのは成果が見えやすい特徴があります。ちょっとした「できた!」が楽しさを生み出し、さらに練習したいという欲求に繋がります。さらに練習をすることでどんどん体力がつき,さらにその先にあるセンスも身についていくという好循環が生まれるわけです。

一方でスポーツの苦手な子は、押し並べて体力不足である傾向があります。

一瞬の楽しさを感じることがあっても、体力がないので反復して練習することが難しく、結果的にセンスが身につかない。そうすると、スポーツが楽しくなくなってしまい、やがて嫌いになっていく。

この構図、算数や他科目も含めた「勉強」に共通していると思いませんか?

算数における「体力」とは?

スポーツの例を挙げてお話してきましたが、実は算数にも、スポーツにおける体力に相当するものがあります。

それは、計算力です!

この記事で伝えたい大切なポイントは、ずばり計算力であり、これこそが算数嫌いを生まないための最重要項目です。

よく、算数が苦手な子の保護者と話をしていると「うちの娘は図形のセンスがない」「うちの息子は文章題が苦手で」などという相談があるのですが、これらの現象は氷山の一角であり、根本的な原因はほぼ間違いなく計算力不足にあると感じています。

算数や数学の学習をする際、試行錯誤を繰り返すことで思考力がついていきます。

「Aという解き方だとうまくいかなそうだ。じゃあBという解き方を試してみよう」というように、いくつかの解き方を頭の中で思い浮かべ、トライアンドエラーを繰り返すことで、少しずつ正答に近づいていくわけです。

しかし、計算力がない子はこの試行錯誤を繰り返すプロセスに時間がかかってしまいます。そのうち、考えることが面倒臭くなり、適当に考えるようになります。そうすると… どのようになっていくか想像できるでしょう。

また、単純に計算力がないと、解ける問題でも解くのに時間がかかってしまいます。効率よく計算すれば5分で解ける問題が10分かかったとしましょう。そうすると、本来30分で終わる宿題も、1時間かかってしまいます。テストが時間内に解き終わらないこともあるでしょう。

つまり、解くのが遅いと、単純にストレスがかかるので「算数そのもの」ではなく「算数に取り組むこと」が嫌いになってしまうのです。そして計算力を鍛えることで、これらの問題は改善される傾向があります。

計算力はできるだけ「計算しない力」?

「計算力」というと、そろばんをイメージされる方も多いでしょう。そろばんを習っていた子は計算が早く、暗算でどんどん計算処理をこなしていきます。

しかし、今回お伝えする計算力はこのような純粋な暗算力とは少し異なります。

例を出してみましょう。皆さんは、この計算を何秒でできますか。

25×36=?

さて、皆さんは何秒で答えを出せましたか?

答えは900です。

この計算、計算力がある子は2秒以内に答えを出してしまいます。その子たちは、この式を次のように考えるのです。

25×36
=25×4×9
=100×9
=900

算数が得意な子は、25という数を見たときに、瞬時に25×4=100という式を作りたくなるのです。

25×36を「えーと、25×6が〜、えーと、繰り上がって…」というように、筆算を頭の中で瞬時に行うのではなく、よく見る数、つまり「数の有名人達」を組み合わせて解いているのです。

計算力がある子と言うと、複雑な計算を暗算で処理するように思われがちですが、実態としては数を適切に分解し組み合わせる力がここで言う計算力なのです。

これは言わば、どうすれば計算をできるだけ減らして解に辿り着くことが出来るのかを「計算」できる力と言えるでしょうか。

他にも、125や375などもよく出る数です。角度の問題を扱う際には18や72などもよく用いられます。

このような数の有名人達をある程度記憶しておくことで、計算力は格段に上がっていきます。小学2年で暗記させられる九九などは、まさにその典型です。

学年が上がるにつれて、様々な数の有名人が登場してきますが、これらを勝手に覚えるくらいまで計算練習を繰り返すことが重要なことなのです。

そして、小学5・6年くらいになったら、ある程度有名な数を覚えさせていくことで、さらに計算力は上がっていきます。

算数が得意になると「お得」なワケ

ここで、算数が嫌い・苦手というマインドをそのままにしないほうがいい理由をお話ししましょう。

一般に、小学生が嫌いな科目第1位は算数と言われています。この記事の読者の中にも、小学生の頃に算数が嫌いだったという人もいるのではないでしょうか。

算数は、中学以降は数学と名を変えて学習していくわけですが、小学校の算数に苦手意識がある子は間違いなく、以降の数学でも苦労してしまいます。

そのまま苦手意識を引きずってしまうと、高校受験や大学受験をする際に「数学ができないから」と志望校のランクを落としたり、「この学部は数学があるから」と受験を回避したりせざるを得なくなります。

ところが近年では、数学の重要性がますます取り沙汰されており、文系の学部でも数学必須科の流れが起きています。

例えば、早稲田大学の看板学部の1つである政治経済学部では、2021年度から一般入試での数学の必須化(これまでは選択制)を決定しました。

進学という観点だけで見ても、数学、そしてその前段階である算数の重要性を感じ取っていただけたかと思いますが、数学が重要視されているのは、さらにお子様たちの将来においても、より重要なスキルになるからです。

近年、AI(人工知能)が私たちの生活の中でも浸透するようになりました。今後の生活において、AIがさらに身近なものとして活用されていくことは間違いないでしょう。

そんな社会を見据えて学校教育の現場では「プログラミング」が必修化されました。これにより子どもたちはデータを日常的に扱う機会が増え、普段の生活や勉強の中でプログラミングに触れる機会が増えることが予想されます。その過程で重視されるのはやはり「数学的な力」でもあります。

算数・数学の苦手を克服しておくことは、お子様たちの進路・職業選択も含め、これからの社会で活躍していくことを見据えても、お得なことが多いというワケなのです。

計算力を高めて、算数を得意にしよう!

もちろん、計算以外にも算数には多くのつまずきやすい難所があります。

図形や文章題だけでなく、時刻、単位、割合、速さなど多くの単元で苦手意識を感じる可能性があり、今後の記事でも単元別に苦手克服へ向けた記事を取り上げる予定です。

しかし、図形問題や文章題など、計算力とは関係無いように思われるかもしれませんが「図形問題や文章題が得意なのに計算力がない子」という子はいません。

計算力は図形問題や文章題を得意にするための必要条件なので、まずは計算力を身につけていくことが重要です。

初回である今回は算数において多くの苦手の根本にある計算力について、お伝えしてきました。

さて、それではどのようにして計算力を向上させていけば良いのでしょうか。

当然、量をこなしていくことが大切なのですが、無味乾燥な計算問題だけを何問も何問も解くことは、それ自体にストレスがかかります。

スポーツでも、体力づくりを目的としてずっと走り込みなどを続けるのは苦痛ですよね。そのため、ミニゲーム形式で楽しく体力づくりをしていった方が良いでしょう。

様々な方法があるわけですが、手っ取り早い方法は「楽しい教材」を使って「保護者と一緒に」取り組むことです。

計算力も楽しくパズル感覚で身につけていけるような教材はたくさんあります。下記に紹介するシリーズはどれも楽しく計算力や数の感覚を身に付けられるのでおすすめです。

関連書籍

天才脳ドリル 数量感覚 初級

★本文の問題では,ならべた2グループのブロックの数を暗算で足したり,最小公倍数・最大公約数を求めたりします。

★数量感覚には,①量感(数を量としてイメージする感覚),②分数感覚(分数を量としてイメージする感覚),③数列や規則をイメージする能力(順にならんだ数の規則性を見つける),④数のセンス(数の分解・合成能力) があり,バランス良くトレーニングすることで,確実に高めていくことができます。

詳しくはこちらから

また、「保護者と一緒に」という点も重要です。家庭教師のように細かく教える必要はありません。間違えてしまったら「なぜそう考えたの?」と聞いて、お子様に説明させてあげてください。

このあたりの保護者の関わり方については非常に重要なので、また別の記事でご紹介していきたいと思います。

著者紹介

迫田 昂輝


株式会社LIBER代表取締役、一般社団法人Next Education 理事。河合塾数学科講師。大手進学塾、予備校で算数・数学を担当。また、自身が経営する会社で英会話家庭教師事業を運営。英語で算数を教えるコースなども開講している。「親の関わり方が子供の学びを変える」というテーマで、保育園や幼稚園などでも講演を行う。早稲田大学理工学部数理科学科卒。 「数学のトリセツ」シリーズ著者。YouTubeで「数学・英語のトリセツ」を公開中。

●数学・英語のトリセツ →https://www.youtube.com/channel/UC7zx7uOmqXsD153rPSUvxcg?view_as=subscriber

●子供英会話ビバイ
「英語で算数を学ぶコース」もご用意しています!ぜひお気軽にお問い合わせください!
http://www.bebai.jp/

連載記事一覧